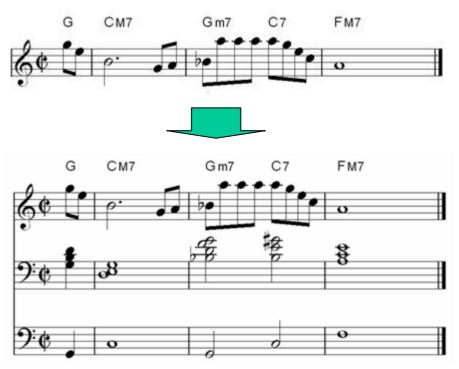
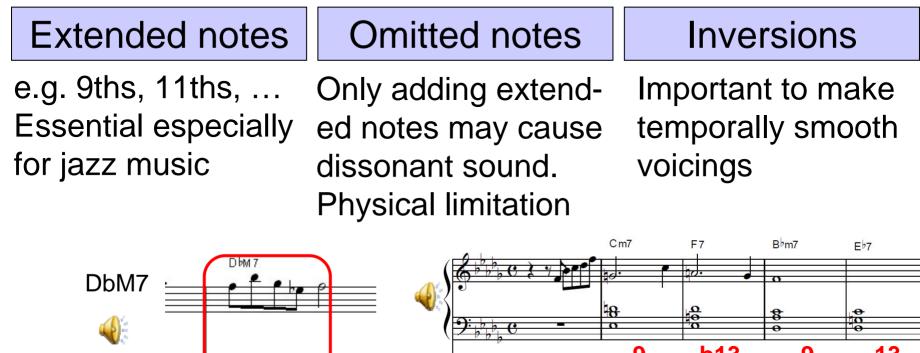
Computational Model for Automatic Chord Voicing based on Bayesian Network

Tetsuro Kitahara, Makiko Katsura, Haruhiro Katayose, and Noriko Nagata CrestMuse Project, CREST, JST, Japan/ Kwansei Gakuin University, Japan


ICMPC 10 (August 2008 in Sapporo)

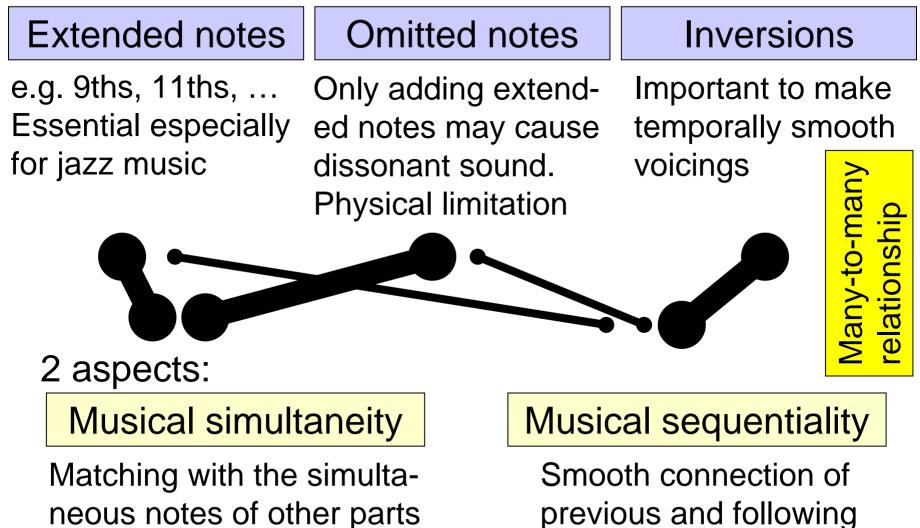
Our Goal

To develop a computational model for automatic *chord voicing*


Chord voicing:

Simultaneous vertical placement of notes in order to obtain the effective sound of a chord

What's the difficulty in chord voicing


3 issues:

What's the difficulty in chord voicing

3 issues:

chords

neous notes of other parts (e.g. melody)

3 possible solutions

Rule-based

Design a set of rules manually --- [Emura, 2008]

Case-based

Use existing examples (corpus) of chord voicings

Instance-based

e.g. Find part of the target chord progression in a corpus and copy-and-paste their voicings --- [Hirata, 2001] etc.

• Probability-based

e.g. Train a probabilistic model with a corpus --- Few trials in previous studies

Merits (M) and Demerits (D)

Rule-based

- [M] If an expert carefully design rules,
- high quality can be expected.
- [D] Difficult to design a good rule set.
- Rules satisfying both simultaneity and sequentiality
 [D] Difficult for users to control the behavior

Case-based

[M] No need to design a thorough rule set.

- [M] Users can control the behavior by switching the corpus.
- [D] If a probabilistic model, a large curpus is needed.

In this study...

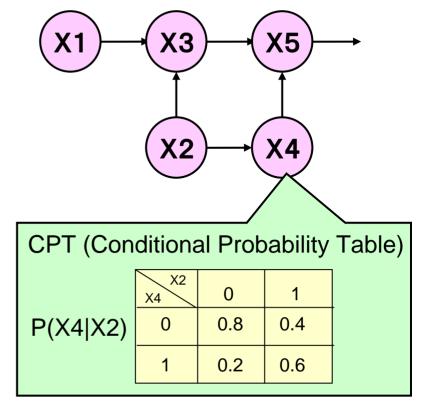
To develop a *probabilistic* model for automatic chord voicing

Aim: To show that...

- We can generate voicings satisfying simultaneity and sequentiality with a model where they are described as probabilistic dependencies.
- If a particular genre corpus is used, the generated voicing also has the characteristics of that genre.

Problem Statement

- Target instrument: Electronic organ (Electone)
 - Upper (right-hand) keyboard: Melody line
 - Lower (left-hand) keyboard: Chord
 - Pedal keyboard: Bass line
- Input: Data written on a lead sheet
 - A melody line
 - a sequence of chord names
- Output: A left-hand voicing and a bass note for each chord
 - No passing chords or passing bass notes are added.
- Target genre: Jazz

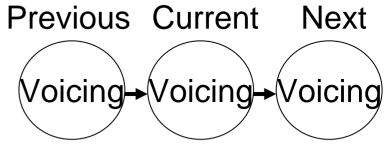

Probabilistic model we use

We use a **Bayesian network**

Bayesian network:

a probabilistic graphical model that represents variables and their probabilistic independencies

- Nodes: Random variables (typically discrete)
- Links: Conditional dependencies between variables
- Each node has a conditional probability table (CPT).
- After observable variables are set, the probabilities of the others are estimated.


Basic policies

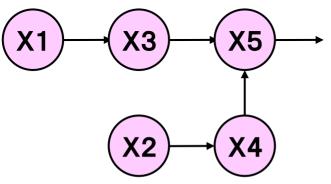
Simultaneity

- Melody and voicing nodes are linked.
- We consider an observed melody to be generated from the harmony including the voicings.

Sequentiality

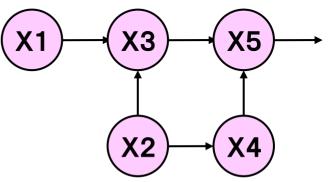
 The voicing nodes for the previous, current, and next chords are linked.

Melody


P(M |V)

 The nodes for top, middle, and bottom notes are separated.

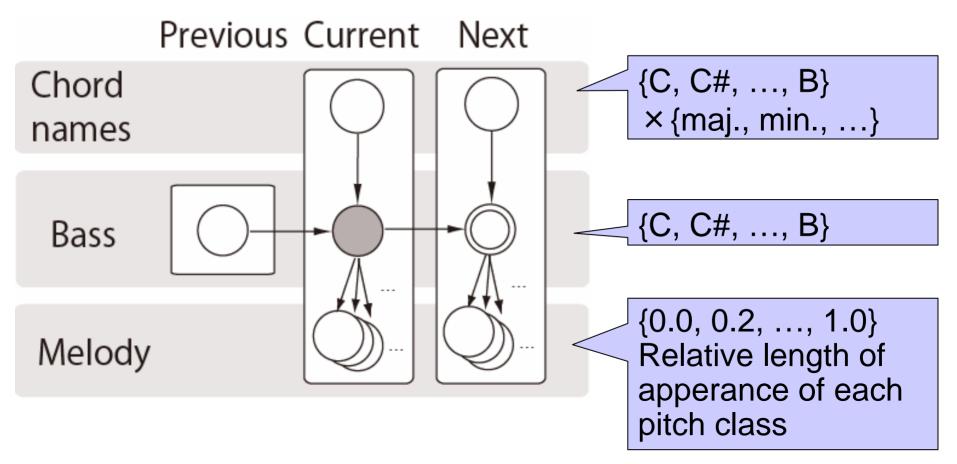
Basic policies


• Design a singly connected network

Singly connected network

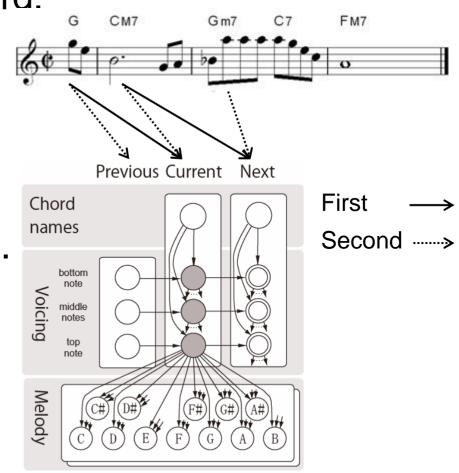
A simple O(n) algorithm for probability calculation exists.

Multiply connected network



A complicated algorithm is needed.

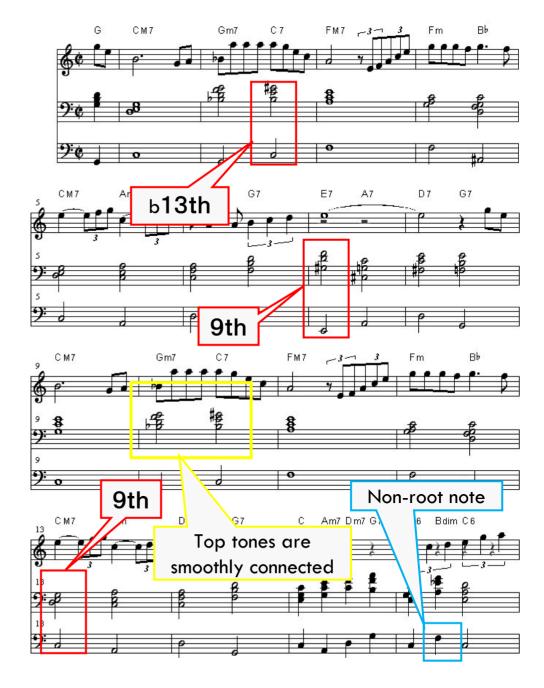
- Design separate models for left-hand voicing and bass note determination
 - Models should be simple for training with limited data


Left-hand voicing model Previous Current Next Chord {C, C#, ..., B} × {maj., min., ...} names bottom {C, C#, ..., B} note Voicing {C, C#, ..., B}+ middle notes {C, C#, ..., B} top note To melody nodes Melody From voicina $\{0.0, 0.2, \ldots, 1.0\}$ nodes G# A# F# Relative length of apperance of each F R pitch class

Bass model

System implementation

- Our models are applied to each chord from the beginning to the end of a given chord progression by shifting the current chord.
- After the probabilities of the nodes are calculated, the note with the highest probability is chosen from each current voicing node.
- Pitch range
 Left-hand: C3-A#4
 Bass: C2-G3
- Training: 30 jazz pieces


Example of Outputs

Left-hand voicing

- Extended notes were added.
- Natural inversions were chosen.

Bass

• Mostly root notes were chosen.

Qualitative evaluation of simultaneity and sequentiality

- No previous- and next-chord nodes
 Extended notes match the melody.
 Temporal connection is not smooth.
- 2. No melody nodes
 Temporal connection
 is smooth.
 Some notes do not
 - match the melody

Qualitative evaluation of simultaneity and sequentiality

Our model
 The matching with the melody
 Smooth temporal connection

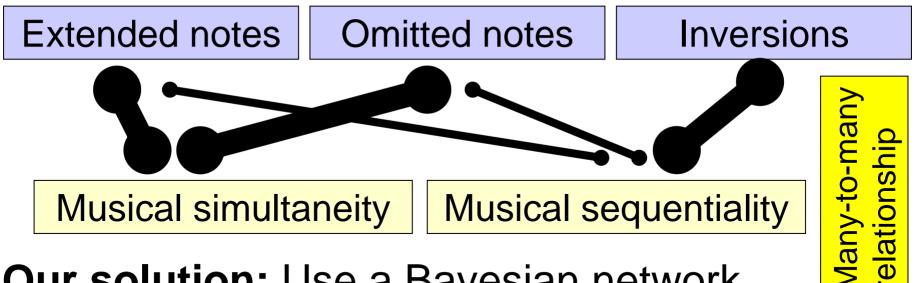
Subjective evaluation of simultaneity by music experts

Results

Outbie at a mate the autointie a					
Subjects rate the voicing		# of	Percent-		
for each chord		chords	age		
© : Beautiful O : Good ∆ : Acceptable × : Unacceptable	Beautiful	82	9.0%		
	Good	719	78.8%		
	Accepable	63	6.9%		
	Unacceptable	48	5.3%		
3 subjects					
e.g. Electone instructor	94.7%	0			
Demonstrator					
5 pieces (608 chords)					

Subjective evaluation of sequentiality by music experts

Results


Subjects rate continuity of each chord change			# of chord changes		Percent- age
O:Good ∆:Acceptable ×:Unacceptable	Good			180	25.8%
	Accepable			407	58.3%
	Unacceptable			111	15.9%
2 subjects	8	34.1	%		

5 pieces (299 chord changes)

Conclusions

Our goal: To develop a computational model for automatic chord voicing

Issue:

Our solution: Use a Bayesian network

Results: Generated voicings satisfy both simultaneity and sequentiality