Using Bass-line Features for Content-based MIR

I. Timbral (spectral) features II. Rhythmic features Mostly same as G. Tzanetakis et al.'s rhythmic features For every 3-s window · Features same as L. Lu's spectral features Intensity Sum of intensities for all frequency bins Waveform Σ, peal Amplitude Smoothed amr Auto correlation Sub-band intensity Intensity of each sub-band (7 sub-bands prepared) Spectral centroid Centroid of the short-time amplitude spectrum Spectral rolloff 85th percentile of the spectral spectrum Spectral flux 2-norm distance of the frame-to-frame spectral amplitude difference Bandwidth Amplitude weighted average of the differences between the spectral components and the Fr1: Ratio of the power of the highest peak to the total sum centroid Fr2: Ratio of the power of the second-highest peak to the total sum Sub-band peak Average of the percent of the largest amplitude values in the spectrum of each sub-band Fr3: Ratio of Fr1 and Fr2 Sub-band valley Average of the percent of the lowest amplitude values in the spectrum of each sub-band Fr4: Period of the first peak in BPM Sub-band contrast Difference between "peak" and "valley" in each sub-band Fr5: Period of the second peak in BPM Fr6: Total sum of the power for all frames in the window

• MFCCs (up to 5th)

The 2008 International Conference on Music Information Retrieval

Yusuke Tsuchihashi^{*1}, O Tetsuro Kitahara^{*1,*2}, and Haruhiro Katayose^{*1,*2} ^{*1}Kwansei Gakuin University, Japan; ^{*2}CrestMuse Project, CREST, JST, Japan t.kitahara@kwansei.ac.jp, http://ist.ksc.kwansei.ac.jp/~kitahara/

3. Design of Bass-line Features

I. Features of pitch variability

- Fv1: # of different pitches that appear in at least one frame = 6 (A2,C#3,D3,E3,D#3,B2)
- Fv2: # of pitches from Fv1 excluding those with an appearance rate of less than 10% or 20% = 5 (A2,C#3,D3,E3,D#3) for 10%
- Fv3: Temporal mean of # of pitches within a sliding shortterm window = 3.5 (if the unit time is 1 measure) (1st meas.: {A2,C#3,D3}, 2nd meas: {E3,D#3,C#3,B2})
- Fv4: % of appearing freq. of the i-th most frequently appearing pitches (i=1,...,5) = 0.53125 for i = 2
- Fv5: Pitch interval between the 2 most frequently appearing pitches = 1 (1st: D3, 2nd: C#3)
- Fv6: Period of the most frequently appearing pitch

4. Application to Genre Classification

- After bass-line, timbral, and rhythmic features are extracted, the genre is identified based on the Mahalanobis distance.
- Leave-one-out cross validation with data for ISMIR'04 Audio Description Contest (300 songs in total)

Without bassline

		Pop &Rock	Metal &Punk	Elect ronic	Jazz &Blues	Classi cal	World
-	Pop&Rock	21	6	11	0	0	3
	Metal&Punk	13	42	8	0	0	4
	Electronic	3	1	5	0	0	0
	Jazz&Blues	7	1	12	48	4	7
	Classical	2	0	9	0	31	20
	World	4	0	5	2	15	16
	Accuracy	42%	84%	10%	98%	62%	32%

With bassline

Τ		Pop	Metal	Elect	Jazz	Classi			
		&Rock	&Punk	ronic	&Blues	cal	World		
	Pop&Rock	23	5	10	5	0	7		
	Metal&Punk	10	42	1	1	0	1		
	Electronic	8	0	23	1	0	6		
	Jazz&Blues	5	2	6	37	2	10		
	Classical	0	0	3	1	45	8		
	World	4	1	7	5	3	18		
	Accuracy	46%	84%	46%	74%	90%	36%		
Ava: 62.7									

Avg: 54.3%

• Feature distribution after PCA

II. Features of pitch motions

Chromatic (=m2) Conjunct (<m3) Disjunct (>=m3)

Ft1: Mean of # of pitch motions per unit time = 4 (if the unit time is 1 measure)

Ft2: % of each motion pattern

Chromatic = 1/8, Conjunct = 3/8, Disjunct = 4/8

Ft3: % of each pattern of successive motions Conj. + Conj.= 2/7, Conj. + Disj. = 2/7 Disj. + Conj. = 2/7, Disj. + Disj. = 1/7

These features are extracted from both pitch sequence and pitch class sequence (i.e. octave ignored) of the bass line

After extraction, the dimensionality is reduced to remove highly correlated features

5. Application to Music Collection Visualization

- Our bass-line, timbral, and rhythmic features are applied to Music Islands (E. Pampalk, 2006)
- Users can enhance a particular musical aspect by giving different weights to different-type features

