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Introduction

Musical instrument identification

Issue 1: Feature variations caused by sound mixtures

What's the problem?
® Frequency components overlapping because of
multiply instruments simultaneously playing

A feature varying less

= Features from such components vary

® Template matching, missing feature theory, etc.

® No attempts of feature weighting like our method A
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Issue 1 Feature variations caused by sound mixtures
Issue 2 Pitch dependency of timbres
Issue 3 Musical context
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How we achieve the basic idea

® Feature weighting based on feature variations
® Give higher weights to features varying less
® Give lower weights to features varying more

® Use training data extracted from mixed sounds
® Linear discriminant analysis (LDA) with the data

Piano Violin

A lower weight

How we collect “mixed-sound” data
® Impossible to collect all possible combinations
of mixing sounds
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covariance to the within-class covariance

LDA is a dimensionality reduction technique
that maximizes the ratio of the between-class

(instr. comb. X pitch comb. X ...)
® Some combinations are frequently used,
whereas other combinations are very rare
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® \We want to collect only frequently used ones
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Issue 2: Pitch dependency of timbres

What's the problem?
® Wide pitch ranges of musical instruments make
their timbres quite different from pitch to pitch
In previous studies...
® They have not modeled how timbres changed
according to the pitch
Our solution
® FO-dependent multivariate normal distribution
® FO-dependent mean function ()
Approximating the pitch dependency of each
feature as a function (cubic polynomial) of FO
® F0-normalized covariance Z;
Representing the non-pitch dependency by
normalizing the FO-dependent mean function

p(x|@; )= EXP{—%(X—M(f))'Z.l(X—ﬂ.(f))}

‘Please check our ICASSP 2003 paper for more detail information.‘

Issue 3: Musical context

What's the problem?

® [ndividually identifying the instrument of each note
sometimtes causes musically unnatural errors
(e.g. only one clarinet note in a melody on a flute)

In previous studies...
® Bayesian Network [Kashino '99]
® No attempts of simpler frameworks

Example of musically unnatural errors

Assuming that the following notes are played
on the same instrument..
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Basic Idea
® Apply the a posteriori probabilities of temporally
neighboring notes to the a priori probability

How we find “temporally neighboring notes”

® Their instruments should not be different from
the target note

® Use musical heuristics that pitch crossing in
simultaneous melodies rarely occurs
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calculated based on a posteriori
probabilities of neighboring notes

=A pair of notes that are correctly judged to be played on the same instrument
------ A pair of notes that are not judged to be played on the same instrument although they actually are

System Overview and Acoustic Features
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""" [3]--[10] Relative cumulative power from fundamental
- to i-th components
Feat extract [11] Relative power in odd and even components
[12]--[20] Number of components whose duration is

Spectral centroid
Relative power of fundamental component

p% longer than the longest duration

Temporal Features

Experiments

Data for experiments
® Test set: Duo, trio and quartet music (3 pcs. each)
® Training data: Solo and duo music

(2 pieces other than the test for each piece)

® Generated by mixing audio data in RWC-MDB-I-2001

according to SMFs on a computer.

® Piano, classical guitar, violin, clarinet and flute

Experimental results
® The recognition rate was improved
® Even if the combinations of instruments were limited,

the recognition rates were improved.

® Without LDA, the recognition rates were improved only
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Conclusions
® We presented three methods that work in combination to automatically generate the description of 20% BT Fodnt
musical instrument names for music information retrieval. 0% P
0

® Experimental results with our methods showed the improvement of musical instrument identification.
® Future work: to integrate our methods with a note estimation method manually performed.
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