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ABSTRACT

This paper describes a method for automatic singer iden-
tification from polyphonic musical audio signals includ-
ing sounds of various instruments. Because singing voices
play an important role in musical pieces with a vocal part,
the identification of singer names is useful for music infor-
mation retrieval systems. The main problem in automati-
cally identifying singers is the negative influences caused
by accompaniment sounds. To solve this problem, we
developed two methods, accompaniment sound reduction
and reliable frame selection. The former method makes it
possible to identify the singer of a singing voice after re-
ducing accompaniment sounds. It first extracts harmonic
components of the predominant melody from sound mix-
tures and then resynthesizes the melody by using a si-
nusoidal model driven by those components. The latter
method then judges whether each frame of the obtained
melody is reliable (i.e. little influenced by accompaniment
sound) or not by using two Gaussian mixture models for
vocal and non-vocal frames. It enables the singer identifi-
cation using only reliable vocal portions of musical pieces.
Experimental results with forty popular-music songs by
ten singers showed that our method was able to reduce
the influences of accompaniment sounds and achieved an
accuracy of 95%, while the accuracy for a conventional
method was 53%.

Keywords: Singer identification, artist identification,
melody extraction, singing detection, similarity-based
MIR

1 INTRODUCTION

Singing voice is known as the oldest musical instrument
that everyone has by nature and plays an important role in
many musical genres, especially in popular music. When
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a song is heard, for example, most people use the vocal
part by the lead singer’s voice as a primary cue for rec-
ognizing (identifying) the song (name). Therefore, most
music stores classify music according to singers’ names
(often referred to as artist names) in addition to musical
genres.

As known from the above importance of the singing
voice, the description of singer names of songs is use-
ful for music information retrieval (MIR). When a user
wants to find songs sung by a certain singer, an MIR sys-
tem can use the description of singer names (artist names).
Furthermore, detailed descriptions of acoustical charac-
teristics of singing voices can also play an important role
in MIR because they are useful for computing acoustical
similarities between singers. Most previous MIR systems,
however, assumed that the metadata including artist names
and song titles were available: if they were not available
for some songs, those songs cannot be retrieved by sub-
mitting a query of their artist names.

To achieve such singing-voice-based MIR and com-
pute artist similarities without requiring the metadata for
every song to be prepared, in this paper, we focus on
the problem of identifying singers for songs, automatic
singer identification problem. This problem is difficult
because most singing voices are accompanied by other
musical instruments. It is therefore necessary to focus
on the vocal part in polyphonic sound mixtures while
considering the negative influences from accompaniment
sounds. In other words, feature vectors extracted from
musical audio signals are influenced by the sounds of
accompanying instruments. Although speaker identifi-
cation problem for (non-music) speech signals has been
dealt with by many studies in the field of speech infor-
mation processing, their results cannot be directly applied
to the singer identification problem for singing voices
with accompaniments because most existing speaker-
identification techniques assume speech signals presented
without other simultaneous sounds. On the other hand,
Tsai et al. [1, 2] have pointed out this problem and have
tried to solve it by using a statistically-based speaker-
identification method for speech signals in noisy environ-
ments [3]. On the assumption that singing voices and ac-
companiment sounds are statistically independent, they
first estimated an accompaniment-only model from in-
terlude sections and a vocal-plus-accompaniment model
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from whole songs, and the estimated a vocal-only model
by subtracting the accompaniment-only model from the
vocal-plus-accompaniment model. However, this assump-
tion is not always satisfied and the way of estimating
the accompaniment-only model has a problem: accom-
paniments during vocal sections and performances (ac-
companiments) during interlude sections can have dif-
ferent acoustical characteristics. In other previous stud-
ies [4, 5, 6, 7], the accompaniment sound problem has not
explicitly been dealt with.

To solve this problem, we propose two methods: ac-
companiment sound reduction and reliable frame selec-
tion. Using the former method, we reduce the influence of
accompaniment. We first extracted the harmonic structure
of the melody from audio signals, and then, resynthesize it
using a sinusoidal model. This method reduces the influ-
ence of accompaniment sounds. The latter method selects
frames that are reliable enough for classification.

The rest of this paper is organized as follows. In the
next section, we describe our method for a singer identifi-
cation task. In Section 3, we describe the implementation
of our system. In Section 4, we describe our experiments
and present the results. In Section 5, we draw conclusions
and point out future directions.

2 SINGER IDENTIFICATION ROBUST
TO ACCOMPANIMENT SOUNDS

This paper describes an automatic singer identification
system, which is the system for determining a singer’s
name of given musical audio signals. The target data
are real-world musical audio signals such as popular mu-
sic CD recordings that contain singing voices of a single
singer and accompaniment sounds.

The main difficulty in achieving automatic singer
identification lies in the negative influences of accompa-
niment sounds. Since a singing voice usually exists with
accompaniment sounds at the same time, acoustical fea-
tures that are extracted from such a singing voice will be
dependent on the accompaniment sounds. When features
that are commonly used in speaker identification studies,
such as cepstral coefficients or linear prediction coeffi-
cients (LPC), are extracted, in fact, those to be obtained
from musical audio signals will represent not solely the
singing voice but a mixture of the singing voice and the
accompaniment sounds. To achieve accurate singer iden-
tification, therefore, it is indispensable to cope with this
accompaniment sound problem.

One possible solution to this problem may be to use
data influenced by accompaniment sounds for both train-
ing and identification. In fact, most of the previous stud-
ies [4, 5, 6, 7] adopted this approach. However, it often
fails because accompaniment sounds usually have differ-
ent acoustical features from song to song. For example,
the acoustical similarity for two musical pieces, the ac-
companiments of which are on a piano solo and a full
band, respectively, will not become high enough, even if
they are sung by the same singer.

To solve the problem, we developed two methods: ac-
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Figure 1: Method overview

companiment sound reduction and reliable frame selec-
tion. Figure 1 shows an overview of our methods.

2.1 Accompaniment Sound Reduction

One of the best solutions to the accompaniment sound
influence is to reduce the accompaniment sounds from
a given audio signal. In order to achieve this, we use
a melody resynthesis technique based on the harmonic
structure that consists of the following three parts:

1. Estimating the fundamental frequency (F0) of the
melody using Goto’s PreFEst [8].

2. Extracting the harmonic structure corresponding to
the melody.

3. Resynthesizing the audio signal (waveform) corre-
sponding to the melody using a sinusoidal synthesis.

Thus, we obtain the waveform corresponding only to the
melody. Note that the melody’s waveform obtained with
this method contains instrument (i.e., non-vocal) sounds
in interlude sections as well as voices in singing sections,
because the melody is just defined as the most predomi-
nant note in each frame [8]. It may therefore be considered
necessary to detect singing sections. In practice, however,
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we can omit this detection, which is a difficult problem,
by using reliable frame selection described below.

2.2 Reliable Frame Selection

Another solution to the accompaniment sound influence
is to select frames that are less influenced by the accom-
paniment sounds and to use only them for identification.
We call this approach reliable frame selection. In order
to achieve this, we introduce two kinds of Gaussian mix-
ture models (GMMs), a vocal GMM λV and a non-vocal
GMM λN. The vocal GMM λV is trained on feature vec-
tors extracted from singing sections, and the non-vocal
GMM λN is trained on those extracted from interlude sec-
tions. Given a feature vector x, the likelihoods for the
two GMMs, p(x|λV) and p(x|λN), represent how the fea-
ture vector x is like a vocal or a (non-vocal) instrument,
respectively. If the feature vector x is less influenced by
accompaniment sounds (i.e., more reliable), p(x|λV) will
be higher and p(x|λN) will be lower. We therefore deter-
mine whether the feature vector x is reliable or not based
on the following equation:

log p(x|λV)− log p(x|λN)
reliable
≥
<

not-reliable

η , (1)

where η is a threshold. In our experiments, we use 64-
mixture GMMs. It is difficult to decide a universal thresh-
old for a variety of songs because we cannot select enough
feature vectors for classification from a song which have
few reliable frames. We therefore determine the thresh-
old dependent on songs so that α% of the whole frames
in the song are selected as reliable frames. Note that most
of the non-vocal frames are rejected in this selection step.
This means that we can avoid detecting singing sections
by using this reliable frame selection.

3 IMPLEMENTATION

In this section, we describe the implementation of our sys-
tem. As described above, our system consists of the fol-
lowing four phases: accompaniment sound reduction, fea-
ture extraction, reliable frame selection and classification.

3.1 Pre-Processing

Given an audio signal, it is monauralized and down-
sampled to 16 kHz. Then, the spectrogram is calculated
using the short-time Fourier transform shifted by 10.0 ms
(160 points) with a 2048-point (128.0 ms) Hamming win-
dow.

3.2 Accompaniment Sound Reduction

Using the method described in Section 2.1, we reduce ac-
companiment sounds as follows:

3.2.1 F0 Estimation

We use Goto’s PreFEst [8] for estimating the F0s of the
melody. PreFEst estimates the most predominant F0

in frequency-range-limited sound mixtures. Since the
melody line tends to have the most predominant harmonic
structure in middle- and high-frequency regions, we can
estimate the F0s of the melody by applying PreFEst with
reliable frequency-range limitation.

We will describe a summary of PreFEst below. Here-
after, x is the log-scale frequency denoted in units of
cents (a musical-interval measurement), and (t) means
time. Given the power spectrum Ψ(t)

p (x), we first apply
a band-pass filter (BPF) that is designed so that it cov-
ers most of the dominant harmonics of typical melody
lines. The filtered frequency components can be repre-
sented as BPF(x)Ψ(t)

p (x), where BPF(x) is the BPF’s fre-
quency response for the melody line. To enable the ap-
plication of statistical methods, we represent each of the
bandpass-filtered frequency components as a probability
density function (PDF), called an observed PDF, p(t)

Ψ (x):

p(t)
Ψ (x) =

BPF(x)Ψ(t)
p (x)

∫ ∞
−∞ BPF(x)Ψ(t)

p (x)dx
. (2)

Then, we consider each observed PDF to have been gen-
erated from a weighted-mixture model of the tone models
of all the possible F0s, which is represented as follows:

p(x|θ (t)) =
∫ Fh

Fl
w(t)(F)p(x|F)dF (3)

θ (t) = {w(t)(F)|Fl ≤ F ≤ Fh}, (4)

where p(x|F) is the PDF of the tone model for each F0,
and Fh and Fl is defined as lower and upper limits of the
possible (allowable) F0 range, and w(t)(F) is the weight
of a tone model that satisfies

∫ Fli

Fhi

w(t)(F)dF = 1. (5)

Tone model represents a typical harmonic structrue and in-
dicates where the harmonics of the F0 tend to occur. Then,
we estimate w(t)(F) using EM algorithm and regard it as
the F0’s PDF. Finally, we obtain the most dominant F0s
F(t) by the following equation:

F(t) = argmax
F

w(t)(F) (6)

3.2.2 Harmonic Structure Extraction

Based on the estimated F0, we extract the power and the
phase of fundamental frequency component and harmonic
components. For each component, we allow |r| cent error
and extract the peak in the allowed area. The power Al , the
phase θl and frequency Fl of l th overtone (l = 1, . . . ,20)
can be represented as

Fl = argmax
F

|S(F)|

(lF · (1−2
r

1200 ) ≤ F ≤ lF · (1+2
r

1200 )), (7)
Al = |S(Fl)|, (8)
θl = argS(Fl), (9)
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Figure 2: Example of F0 estimation and harmonic struc-
ture extraction. Envelopes of the spectrums are calculated
using linear prediction (LP) analyses.

where S(F) denotes spectrum, F denotes F0 estimated by
the PreFEst. In our experiments, we set r to 20.

Figure 2 shows an example of F0 estimation and har-
monic structure extraction. Figure 2 (a) shows an original
spectrum and its envelope and Figure 2 (b) shows an ex-
tracted spectrum and its envelope. As seen in the figures,
a spectral envelope of extracted spectrum precisely rep-
resents formants of singing voice, compared with that of
original spectrum.

3.2.3 Resynthesis

We resynthesize the audio signals of the melody from
the extracted harmonic structure by using a sinusoidal
model [9]. Resynthesized audio signals are expressed as

s(t) =
L

∑
l=1

Al cos(ωlt +θl), (10)

where Al , θl , Fl represent the power, the phase and the
frequency of the l th overtone and t is time.

3.3 Feature Extraction

We calculate feature vectors from the resynthesized audio
signals. It is known that the individual characteristics of
speech signals are expressed in their spectral envelopes.
In the field of speech recognition studies, in fact, various
methods have been proposed [10] for calculating feature
vectors concerning spectral envelopes. Here, we compare
some of them, which are commonly used in speech recog-
nition studies.

3.3.1 Mel-frequency Cepstral Coefficients (MFCC)

MFCCs [11, 12] are cepstral coefficients calculated on a
mel-frequency scale. Cepstral analysis is the method to
separate envelope of spectrum from fine structure. In

order to compute cepstral coefficients [10], we take the
log-magnitude descrete cosine transform (DCT) from the
power spectrum. The envelops are represented in lower
order of the cepstral coefficients, while the fine structures
are in higher order. Mel-frequency is a logarithmic fre-
quency scale fitted to the characteristics of the human au-
ditory sense. For the MFCC computations, mel-filterbank
analysis is applied first. Then, we obtain the MFCC
from the log-magnitude DCT. In this paper, we use 15
dimensional MFCC, caluculated via 20 dimensional mel-
filterbank analysis.

3.3.2 Linear Prediction Coefficients (LPC)

Linear prediction (LP) analysis [13, 14] is a method for
estimating the transfer function of vocal tract, assuming
that input audio signal contains only human voice. In the
LP model, given a signal s(n), we predict the signal as a
linear combination of its previous samples. The predicted
value sW (n) is given by

sW (n) =
p

∑
i=1

αisW (n− i)+g(n), (11)

where p represents the order of the predictor, αis are de-
fined as the linear prediction coefficients (LPC), and g(n)
represents the error in the model. The LPCs are deter-
mined by minimizing the mean squared prediction error
of g(n). We use 20th-order LPC in this paper.

3.3.3 LP-derived Cepstral Coefficients (LPCC)

LPCCs [13] are cepstral coefficients of a LPC spectrum.
Cepstral analysis on the LPC spectrum plays a role of or-
thogonalization and is known to be effective in pattern
recognition. The LPCCs c(n) is directly obtained from
the LPC with the following equation:

c(n) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

logσ2 (n = 0)

αn +
n−1

∑
k=1

(
1− k

n

)
c(k)αn−k (1 ≤ n ≤ p)

n−1

∑
k=1

(
1− k

n

)
c(k)αn−k (n > p)

,

(12)

where σ2 represents the power of the signal, αn represent
the LPCs, and p represents an order of the LPC. We set
the order of the LPCC to 15 in this paper.

3.3.4 Linear Prediction Mel Cepstral Coefficients
(LPMCC)

LPMCCs are mel-cepstral coefficients of LPC spectrum.
In addition to the role of orthogonalization, the LPMCCs
are superior to the LPC in terms of suitability to the human
auditory sense, which is a benefit of the mel-frequency
scale. We derive the LPMCC by computing the MFCC
from the LPC spectrum because of simplicity of imple-
mentation. We set the order of the LPMCC to 15 in this
paper.
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Table 1: Training data for reliable frame selection.
Name Gender Piece Number
Shingo Katsuta M 027
Yoshinori Hatae M 037
Masaki Kuehara M 032, 078
Hiroshi Sekiya M 048, 049, 051
Katsuyuki Ozawa M 015, 041
Masashi Hashimoto M 056, 057
Satoshi Kumasaka M 047
Oriken M 006
Konbu F 013
Eri Ichikawa F 020
Tomoko Nitta F 026
Kaburagi Akiko F 055
Yuzu Iijima F 060
Reiko Sato F 063
Tamako Matsuzaka F 070
Donna Burke F 081, 089, 091, 093, 097

Table 2: Songs used for evaluation. The numbers written
in the table are piece numbers of RWC-MDB-P-2001.

Name Gender D1 D2 D3 D4

a Kazuo Nishi M 012 029 036 043
b Hisayoshi Kazato M 004 011 019 024
c Kousuke Morimoto M 038 039 042 044
d Shinya Iguchi M 082 084 088 090
e Jeff Manning M 085 087 095 098
f Hiromi Yoshii F 002 017 069 075
g Tomomi Ogata F 007 028 052 080
h Rin F 014 021 050 053
i Makiko Hattori F 065 067 068 077
j Betty F 086 092 094 096

3.4 Reliable Frame Selection

We select frames that are reliable and influenced a little by
accompaniment sounds based on the method described in
Section 2.2.

3.5 Singer Determination

The name of the singer is determined based on 64-mixture
GMMs. Let X = {xt |t = 1, . . . ,T} be a time series of fea-
ture vectors selected in the reliable frame selection phase,
and λs be the GMM for the singer s. Then, the name of
the singer is determined through the following equation:

s = argmax
i

1
T

T

∑
t=1

log p(xt |λi). (13)

4 EXPERIMENTS

In this section, we describe the experiments that were con-
ducted to evaluate our system.

4.1 Effectiveness of the whole system

To confirm the effectiveness of our methods, accompa-
niment sound reduction and reliable frame selection, we
conducted experiments on singer identification under the
following four conditions:

Table 3: Experimental results that show effectiveness of
the whole system, where “reduc.” and “selec.” mean ac-
companiment sound reduction and reliable frame selec-
tion, respectively.

(i) (ii) (iii) (iv)
baseline reduc. only selec. only ours

a 1/4 2/4 2/4 4/4
b 3/4 1/4 3/4 4/4
c 2/4 2/4 3/4 4/4
d 4/4 4/4 4/4 4/4
e 1/4 0/4 0/4 4/4
f 1/4 2/4 2/4 3/4
g 0/4 2/4 0/4 3/4
h 4/4 4/4 4/4 4/4
i 4/4 4/4 3/4 4/4
j 1/4 3/4 2/4 4/4

Total 53% 60% 58% 95%

(i) without both the reduction and the selection (baseline),

(ii) without the reduction, with the selection,

(iii) with the reduction, without the selection, and

(iv) with both the reduction and the selection (ours).

We used forty songs by ten different singers (five were
male and five were female), listed in Table 2, taken from
“RWC Music Database: Popular” [15]. Using these data,
we conducted the 4-fold cross validation, that is, we first
divided the whole data into four groups, Di (i = 1,2,3,4)
in Table 2, and then repeated the following step four times:
each time, we left out one of the four groups for training
and used the omitted one for testing. As the training data
for the reliable frame selection, we used twenty-five songs
of sixteen different singers listed in Table 1, also taken
from “RWC Music Data: Popular”, which differ from the
singers used for evaluation. We set α to 15%, in reference
to the experiment described in Section 4.2. As a feature
vector, in response to the experiment described in Section
4.3, we use the LPMCC with the reduction and the MFCC
without. We adopt the MFCC for the experiment with-
out the reduction, because, as described in Section 3.3.2,
the LPMCC that is based on LPC can be applied only to
human voice.

Table 3 shows results of the experiments. As seen
in the table, accompaniment sound reduction and reliable
frames selection improved the accuracy of singer identi-
fication. When these two methods were used together, in
particular, the accuracy was significantly improved: from
53% to 95%.

Figure 3 shows confusion matrices of the experiments.
As seen in the figure, confusions between male and female
decreased by using the reduction method. It means that, in
the cases of (ii) and (iv), the reduction method reduced the
influences of accompaniment sound, and the system could
correctly identify the genders. On the other hand, in the
cases without the reduction method (Conditions (i) and
(iii)), the influences of accompaniment sound prevented
the system from correctly identifying even the genders of
the singers.
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Figure 3: Confusion matrices. Center lines in each figure are boundaries between male and female. Note that confusion
between male and female decreased by using the accompaniment sound reduction method.
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4.2 Dependency of accuracy on α

We conducted experiments with setting α to various val-
ues to investigate the dependency of accuracies on α . Ex-
perimental results shown in Figure 4 show that classifica-
tion accuracy was not affected by small changes of α . It
is also noticeable that a value of α that gives the highest
accuracy differed. The reason of this fact is the follow-
ing: accompaniment sound reduction method reduced the
influences of accompaniment sounds and emphasized the
differences between reliable and unreliable frames. Thus,
if we raised α too much, the system selected many unreli-
able frames and the system performance decreases. With-
out the reduction method, on the other hand, reliability of
each frame did not make much difference because of the
influences of accompaniment sounds. Therefore, it was
profitable to use many frames for classification by setting
α comparatively higher. However, in this case, we could
not attain sufficient classification accuracy because of the
influences of accompaniment sounds.

4.3 Investigation of Accompaniment Sound
Influence and Comparison of Features

4.3.1 Conditions

There are two purposes in the experiments here. The
first one is to investigate the influence by accompaniment
sounds. We investigated it by comparing our results to

Table 4: Investigation of accompaniment sound influence
and comparison of features. The feature name written
in bold font is the one that gives the highest accuracy.
“corr. F0s” and “est. F0s” mean using correct F0s and
estimated F0s, respectively, and “reduc.” means accom-
paniment sound reduction.

(i) (ii) (iii) (iv) (v)
Using vocal-only Using mixed-down data
w/o with with reduc. w/o

reduc. reduc. corr. F0s est. F0s reduc.
MFCC 98% 95% 78% 75% 75%
LPC 83% 88% 50% 58% 48%

LPCC 95% 98% 75 % 75% 63%
LPMCC 98% 98% 88% 83% 68%

ones for vocal-only data. In addition, we compared esti-
mating F0s of melodies and using given correct ones. In
our experiments, we virtually generated the correct F0s by
estimating ones using vocal-only tracks. Although the es-
timates using vocal-only tracks were not completely cor-
rect, its accuracy was sufficiently high comparing with
estimating ones using mixed-down versions. The second
purpose is to compare a variety of features. We used four
kinds of features described in Section 3.3 and compared
these results. In the experiments here, we manually cut out
60 seconds of singing regions for each song, because we
omitted reliable frame selection method in order to inves-
tigate the effectiveness of the only accompaniment sound
reduction method.

4.3.2 Results and Discussion

Table 4 shows the results of the experiments. When we fo-
cused on the differences between the cases (iv) and (v), the
accuracies for the LPC, the LPCC, and the LPMCC were
improved by the reduction method, whereas that for the
MFCC was not improved. This is because the LPC etc.
assume that given signal contains only a single speech.
For this assumption, the accuracies for the LPC etc. in the
case (v) were low because the inputs were a mixture of
singing voices and accompaniment sounds. Because the
case (iv) dealt with signals obtained by extracting only
singing voices, the accuracies were higher than the case
(v). Because the MFCC is not based on such an assump-
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tion, on the other hand, the accuracy for the MFCC in
the case (v) was high, but that in the case (iv) was same.
Because the LPMCC models the sounding mechanism of
humans’ voices, it could be expected to achieve a high ac-
curacy if the assumption is satisfied. In fact, whereas the
accuracy for the LPMCC was lower than that for MFCC
in the case (v), that for the LPMCC was higher than that
for the MFCC in the case (iv). Whereas most previous
studies used the MFCC, we achieved to adopt more ro-
bust features by reducing accompaniment sounds.

When we compared the LPC, the LPCC, and the
LPMCC, the accuracy for the LPCC was 17% higher than
that for the LPC, and that for the LPMCC was 8% higher
than that for the LPCC. The reason why the accuracy for
the LPCC was higher than that for the LPC is that the
LPCCs are orthogonal features unlike the LPC. The rea-
son why the accuracy for the LPMCC was higher than that
for the LPCC is mel-frequency cepstrum allow better sup-
pression of insignificant spectral variation in the higher
frequency bands.

The accuracies for the cases (iii) and (iv) were com-
paratively close. This was because partial misestimation
of F0s was not critically connected to errors for singer
identification since the names of singers were determined
based on the mean of a time series of likelihoods.

The case (iv) in experiment described in Section 4.1
was superior to the case (iv) in this experiment, even
though we manually fed singing regions into the system
for this experiment. This means that the selection method
actually functioned not only as distinguishing vocal and
non-vocal frames but also as determining whether each
frame was reliable or not. The case (v) in this experiment,
however, was inferior to the case (iii) in experiments de-
scribed in 4.1. This result means that, to accurately select
reliable frames, it is indispensable to use both the reduc-
tion method and the selection method together.

Table 5 lists an excerpt of experimental results for
each singer. As seen in the table, the reduction method
improved accuracies particularly for the singer (g). This
was because the songs of the singer (g) have different
kinds of genres such as a piano ballad and R&B. These
songs are accompanied on different instruments and hence
have different acoustical characteristics of accompani-
ment sounds. Whereas the system without the reduction
method did not correctly identify the singer’s name for
these songs, that with our method did. This result shows
that the reduction method could reduce the influence of
acoustical differences in accompaniment sounds. In con-
trast, identification errors for the singer (e) increased by
the reduction method. This is because the melodies’ F0s
were incorrectly estimated in some songs. We can also
confirm this by the fact that identification errors did not
increase when we provided the correct F0s.

5 CONCLUSION

We have described two methods that work in combination
to automatically identify singers for music information re-
trieval. To identify the singer names of musical pieces in-
cluding sounds of various instruments, our method solved

Table 5: Accuracy for each singer, where “reduc.” means
accompaniment sound reduction.

(iii) (iv) (v)
with reduc., with reduc., w/o

corr. F0s est. F0s reduc.
LPMCC LPMCC MFCC

a 3/4 3/4 3/4
b 4/4 4/4 4/4
c 4/4 4/4 3/4
d 4/4 4/4 4/4
e 3/4 2/4 3/4
f 3/4 2/4 2/4
g 2/4 2/4 0/4
h 4/4 4/4 4/4
i 4/4 4/4 4/4
j 4/4 4/4 3/4

Total 88% 83% 75%

the problem of the accompaniment sound influences. In
our experiments with forty songs by ten singers, we found
that our methods achieved identification accuracy of 95%
and confirmed the robustness and effectiveness of those
methods.

The main contributions of this paper can be summa-
rized as follows:

• We clarified the problem of the accompaniment
sound influence for singer identification, which has
not been dealt with except for only a few attempts,
and provided two effective solutions, accompani-
ment sound reduction and reliable frame selection.

• The use of the accompaniment sound reduction
method made it possible to reduce the negative in-
fluence of accompaniment sound by extracting and
resynthesizing the harmonic structure of the predom-
inant melody. Though similar methods have been
used to improve the noise robustness in the field of
speech recognition [16], this is the first paper that
shows its effectiveness for singer identification.

• The reliable frame selection method made it possi-
ble to select frames reliable enough for classifica-
tion. Although similar methods were used in pre-
vious studies, they focused on distinguishing vocal
and non-vocal frames; they did not consider the reli-
ability of each frame. Note that our selection method
rejects even unreliable vocal frames as well as non-
vocal frames.

• We showed an investigation of features for singer
identification. While many features have been pro-
posed in the field of speech recognition [10], it has
not been clear which feature was appropriate for
singer identification. We compared various features
in terms of the singer identification, and found that
the LPMCC was the most robust among them. This
result will contribute to the progression of singer
identification research.

In the future, we plan to extend our method to cal-
culate acoustical similarities between musical pieces in
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terms of singers and apply it to music information retrieval
based on singing voice similarities.
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